
Cyclocreatine Phosphate: A Novel Mechanism for Preventing Development of Heart Failure

Salwa A. Elgebaly, Ph.D. Founder & CEO, Nour Heart, Inc. Vienna, Virginia, U.S. Department of Surgery, Univ. of Connecticut School of Medicine, Farmington, CT, U.S.

Á

Disclosures of Authors

- S.A. Elgebaly (Univ. of Connecticut Faculty of Medicine): Founder, Nour Heart, Inc.
- C. Van Buren (Univ. of Texas Sch. of Medicine): Speaker/Speaker's Bureau; Self; Veloxis.
- **R. Todd (ProChem Intl, LLC):** None.
- **R. Poston (SUNY Downstate Univ.):** None.
- M.A. Rabie (Cairo Univ. Faculty of Pharmacy): None.
- A.F. Mohamed (Cairo Univ. Faculty of Pharmacy): None.
- L.A. Ahmed (Cairo Univ. Faculty of Pharmacy): None.
- ▶ N.S. El Sayed (Cairo Univ. Faculty of Pharmacy): None.

What is Cyclocreatine? A Novel "Bioenergetic" Compound!

- Demand ischemia causes irreversible myocardial injury through exhaustion of cellular ATP
- Cyclocreatine Phosphate (CCrP) is a "bioenergetic" compound maintains elevated cellular ATP during ischemia
- Preservation of cellular ATP by CCrP administration:
 - Prevented myocardial ischemic injury
 - Reduced post-ischemic cardiac inflammation
 - Reduced myocardial apoptosis
 - Restored contractile function immediately after reperfusion in animal models of:
 - > AMI
 - Global cardiac arrest
 - Cardiopulmonary bypass
 - Heart transplantation

3

Elgebaly SA, et al. Expert Review of Cardiovascular Therapy – 2019 – REVIEW

What is Unique About Cyclocreatine? Prevents Myocardial Ischemic Injury!

🖑 U.S. Depart	ment of Hea	Ith & Human Services					a A A
	. FOOD Nistrati	& DRUG			Follow FDA Er	n Español	ARCH
Home Foo	d Drugs	Medical Devices	Radiation-Emitting Products	Vaccines, Blood & Biologics	Animal & Veterinary	Cosmetics 1	Tobacco Products
			esignations and are Diseases & Conditions	Approvals			6 a 🛛
Results for A	II Designa	ations					
Return to	Orphar	n Products De	esignation Search Pa	age			
1	- 25 of 1				Designations: 1		
# Generic N	ame C)rnhan Designa	tion			Designatio	n Designation

Generic Name
Orphan Designation
Designation Status
Designation Status

cyclocreatine phosphate
Prevention of ischemic injury to enhance cardiac graft recovery and survival in heart transplantation.
01/17/2018
Designated
ability and the second sec

FDA Awarded Cyclocreatine Phosphate (CCrP) Orphan Drug Status with the Unique Designation of:

4

"Prevention of Ischemic Injury to Enhance Cardiac Graft Recovery and Survival in Heart Transplantation" (DRU-2015-4951)

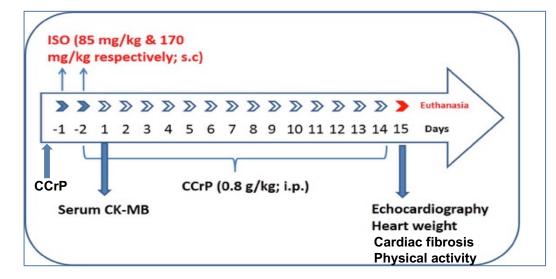
Clinical Use: End-Stage Heart Failure Patients Scheduled for Heart Transplantation Procedure

Objectives: To examined whether the administration of Cyclocreatine Phosphate, as a new pharmacologic agent that has the ability to maintain and restore myocardial energetics in the setting of ischemia, would prevent the development of heart failure?

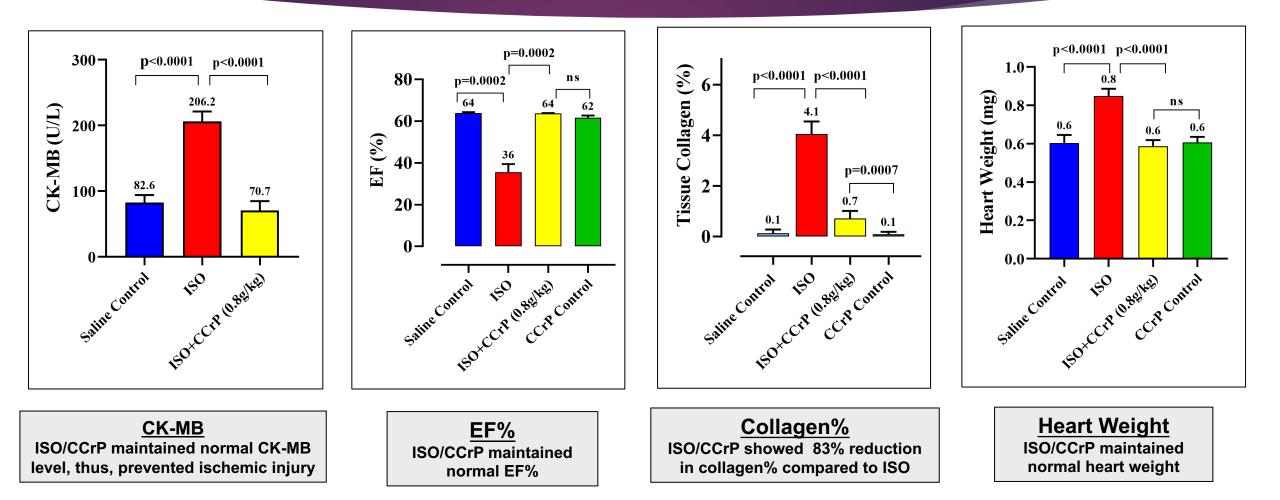
5

Hypothesis & Experimental Design

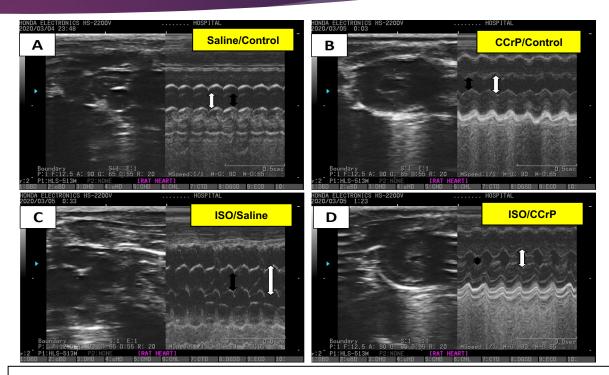
Hypothesis: The administration of CCrP (sodium salt) will prevent ischemic injury and the subsequent development of heart failure in the standard isoproterenol (ISO) rat model


ISO Rat Model: ISO is a beta-adrenergic agonist which in high doses causes myocardial injury (subendocardial ischemia and cellular ATP depletion)

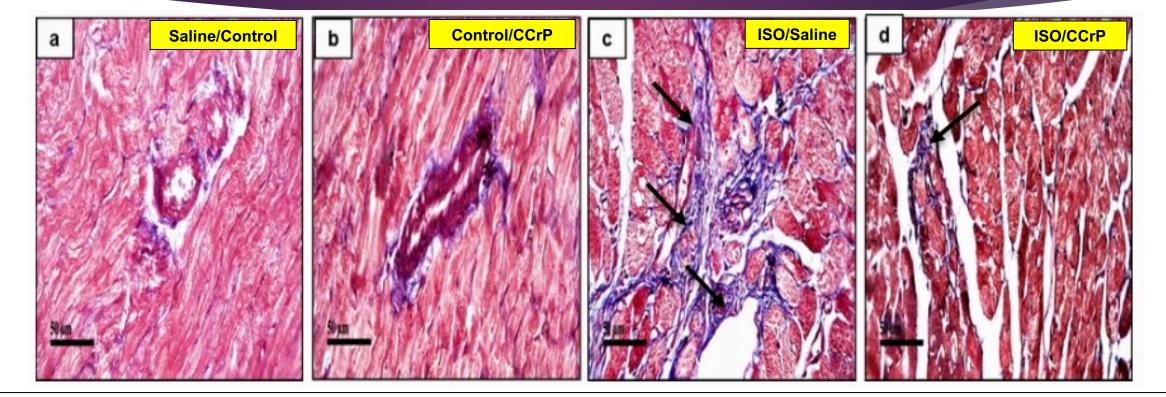
GROUPS:


- 1. ISO/Saline (n=6)
- 2. ISO/CCrP (0.8 gm/kg/day) (n=5)
- 3. Control/Saline (n=5)
- 4. Control/CCrP (0.8 gm/kg/day) (n=4) (*liver & kidney safety*)
- CCrP treatment was initiated 24 hrs. before first ISO
- Serum CK-MB was measured 1 day after second ISO
- After 14 days, ECHO / EF%, collagen %, fibrosis, heart weight, and physical activity were determined

20 male Wistar rats (180-220 g)


ہ Serum CK-MB Level (after 1 day) EF%, Collagen % and Heart Height (after 14 days)

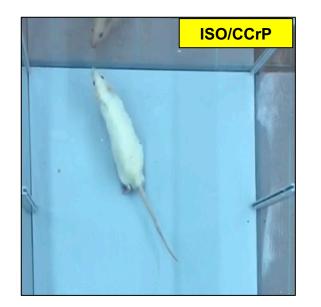
Results Echocardiographic LVEDD, LVESD and EF%

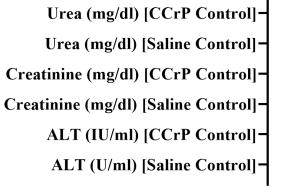

GROUPS	LVEDD (mm)	LVESD (mm)	EF (%)
Saline Control	7.77	5.43	63.87
	± 0.15	± 0.03	± 0.29
CCrP Control	7.93	5.53	61.57
	± 0.03	± 0.09	± 0.64
ISO + Saline	10.07*	9.00*	35.57*
	± 0.12	± 0.15	± 2.25
ISO + CCrP	8.03 [#] ± 0.09	6.27 [#] ± 0.07	63.67 [#] ± 0.13

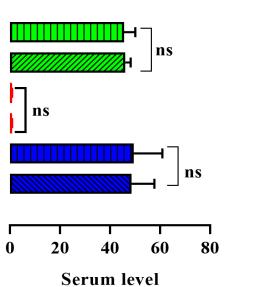
After 14 days, ISO/CCrP rats showed normal EF% (63.67%), while ISO/saline rats showed significant drop in EF% (35.57%). *p < 0.0001 for ISO/Saline vs. Saline, and #p < 0.0001 for ISO/CCrP vs. ISO/Saline. Data are expressed as mean \pm S.E.M. Statistical analysis was performed using One-way ANOVA followed by Tukey's post-hoc test.

Echocardiography images demonstrate the effect of CCrP on ISOinduced changes in M-mode in left ventricular end-diastolic diameter; LVEDD (1) and left ventricular end-systolic diameter; LVESD (1). Groups include: Saline/Control (A), CCrP/Control (B), ISO/Saline (C), and ISO+ CCrP (D). CCrP dose is 0.8 g/kg/day.

Results Cardiac Fibrosis


Blinded histopathological analysis showed extensive fibrous deposition in ISO/saline rats, while ISO/CCrP rats showed delicate fibrous tissue between the myocardial bundles, almost close to normal. Specimens (a-d) were stained with Masson's trichrome for estimation of myocardial fibrosis (blue color). Analysis was conducted using 10 randomly selected fields from 2 sections for each heart. Groups are: (a) Saline/Control, (b) CCrP/Control (0.8 g/kg/day), (c) ISO/Saline and (d) ISO/CCrP (0.8 g/kg/day). CCrP protected rats against cardiac fibrosis.


8


Results

Physical Activity CCrP Safety - Liver & Kidney

Low to no activity in ISO/Saline rats (Video is Attached) High activity in ISO/CCrP rats (Video is Attached) Healthy rats treated daily with CCrP (0.8 g/kg/day) for 14 days showed <u>no toxicity</u> in liver and renal function

9

Conclusions

Myriad efforts to mitigate heart failure by targeting specific "downstream pathways" have been largely disappointing. The enhancement of myocardial bioenergetics is a <u>novel treatment</u> <u>approach</u> that makes downstream pathways less likely to be activated in response to various forms of myocardial injury including demand ischemia. Cyclocreatine phosphate is a first-inclass agent that specifically targets myocardial bioenergetics

- Cyclocreatine phosphate is a unique bioenergetic compound that <u>prevented ischemia-induced heart failure</u>, presumably by its documented capacity to maintain elevated levels of cellular ATP during ischemic insults. Preservation of ATP ties all results together by: preventing ischemic injury and cardiac remodeling (fibrosis and collagen deposition), and maintaining normal heart weight, leading to <u>normal ejection fraction and physical activity</u>
- Initial studies indicated that Cyclocreatine Phosphate is a <u>safe</u> compound with no toxic effect on cardiac, liver and kidney function

Thank You.

11

Prof. Salwa Ahmed Elgebaly selgebaly@nourheart.com